在国家自然科学基金和创新研究群体科学基金的支持下,由中科院长春应用化学研究所杨小牛领导的一个研究小组在半导体/绝缘体高分子复合材料研究方面取得突破,其最新研究成果被国际著名期刊Advanced Functional Materials以“卷首插画”形式予以重点报道。
通过控制聚噻吩/绝缘聚合物共混物制备过程中结晶和相分离的竞争关系,可抑制大尺度的两相分离,由此得到均匀的半导体/绝缘体复合材料。这种材料表现出了绝缘基质增强的半导体电荷传输现象。研究人员认为,载流子以极化子形式在复合材料中进行传导,由于绝缘基质极化率较低,极化子在半导体/绝缘体界面处传输时受到周围极化环境的影响较小,这有助于降低界面处的电荷传输活化能,由此提高了两相界面处的载流子迁移率。
从这个意义上讲,对于两相共混体系,增强的体相电荷传输性质需要满足下列三个条件:首先,鉴于电荷主要在共混两相界面传输,绝缘聚合物的介电常数必须足够低才可能降低电荷传输活化能,从而有效提高半导体相的载流子迁移率;其次,半导体/绝缘体两相相分离尺度需要足够小,才能大幅提高两相接触界面;最后,要求半导体相要有较好的连续性,有利于减小电荷传输的阻力。
在半导体聚合物中通过共混引入通用绝缘聚合物,不仅可以提高其电学性能,而且可降低基于塑料的柔性电子器件的成本,提高其柔韧性和环境稳定性。研究小组通过讨论半导体/绝缘体共混物电荷传输增强的物理机制,明确了获得具有高导电能力复合材料的制备工艺和途径。
Advanced Functional Materials
备注:2010年第16卷第7期023